82 research outputs found

    A Physical Layer Secured Key Distribution Technique for IEEE 802.11g Wireless Networks

    Full text link
    Key distribution and renewing in wireless local area networks is a crucial issue to guarantee that unauthorized users are prevented from accessing the network. In this paper, we propose a technique for allowing an automatic bootstrap and periodic renewing of the network key by exploiting physical layer security principles, that is, the inherent differences among transmission channels. The proposed technique is based on scrambling of groups of consecutive packets and does not need the use of an initial authentication nor automatic repeat request protocols. We present a modification of the scrambling circuits included in the IEEE 802.11g standard which allows for a suitable error propagation at the unauthorized receiver, thus achieving physical layer security.Comment: 9 pages, 7 figures. Accepted for publication in IEEE Wireless Communications Letters. Copyright transferred to IEE

    LDPC coded transmissions over the Gaussian broadcast channel with confidential messages

    Full text link
    We design and assess some practical low-density parity-check (LDPC) coded transmission schemes for the Gaussian broadcast channel with confidential messages (BCC). This channel model is different from the classical wiretap channel model as the unauthorized receiver (Eve) must be able to decode some part of the information. Hence, the reliability and security targets are different from those of the wiretap channel. In order to design and assess practical coding schemes, we use the error rate as a metric of the performance achieved by the authorized receiver (Bob) and the unauthorized receiver (Eve). We study the system feasibility, and show that two different levels of protection against noise are required on the public and the secret messages. This can be achieved in two ways: i) by using LDPC codes with unequal error protection (UEP) of the transmitted information bits or ii) by using two classical non-UEP LDPC codes with different rates. We compare these two approaches and show that, for the considered examples, the solution exploiting UEP LDPC codes is more efficient than that using non-UEP LDPC codes.Comment: 5 pages, 5 figures, to be presented at IEEE ICT 201

    AONT-LT: a Data Protection Scheme for Cloud and Cooperative Storage Systems

    Full text link
    We propose a variant of the well-known AONT-RS scheme for dispersed storage systems. The novelty consists in replacing the Reed-Solomon code with rateless Luby transform codes. The resulting system, named AONT-LT, is able to improve the performance by dispersing the data over an arbitrarily large number of storage nodes while ensuring limited complexity. The proposed solution is particularly suitable in the case of cooperative storage systems. It is shown that while the AONT-RS scheme requires the adoption of fragmentation for achieving widespread distribution, thus penalizing the performance, the new AONT-LT scheme can exploit variable length codes which allow to achieve very good performance and scalability.Comment: 6 pages, 8 figures, to be presented at the 2014 High Performance Computing & Simulation Conference (HPCS 2014) - Workshop on Security, Privacy and Performance in Cloud Computin

    Practical LDPC coded modulation schemes for the fading broadcast channel with confidential messages

    Full text link
    The broadcast channel with confidential messages is a well studied scenario from the theoretical standpoint, but there is still lack of practical schemes able to achieve some fixed level of reliability and security over such a channel. In this paper, we consider a quasi-static fading channel in which both public and private messages must be sent from the transmitter to the receivers, and we aim at designing suitable coding and modulation schemes to achieve such a target. For this purpose, we adopt the error rate as a metric, by considering that reliability (security) is achieved when a sufficiently low (high) error rate is experienced at the receiving side. We show that some conditions exist on the system feasibility, and that some outage probability must be tolerated to cope with the fading nature of the channel. The proposed solution exploits low-density parity-check codes with unequal error protection, which are able to guarantee two different levels of protection against noise for the public and the private information, in conjunction with different modulation schemes for the public and the private message bits.Comment: 6 pages, 4 figures, to be presented at IEEE ICC'14 - Workshop on Wireless Physical Layer Securit

    Improving the efficiency of the LDPC code-based McEliece cryptosystem through irregular codes

    Full text link
    We consider the framework of the McEliece cryptosystem based on LDPC codes, which is a promising post-quantum alternative to classical public key cryptosystems. The use of LDPC codes in this context allows to achieve good security levels with very compact keys, which is an important advantage over the classical McEliece cryptosystem based on Goppa codes. However, only regular LDPC codes have been considered up to now, while some further improvement can be achieved by using irregular LDPC codes, which are known to achieve better error correction performance than regular LDPC codes. This is shown in this paper, for the first time at our knowledge. The possible use of irregular transformation matrices is also investigated, which further increases the efficiency of the system, especially in regard to the public key size.Comment: 6 pages, 3 figures, presented at ISCC 201

    Precoded Cluster Hopping in Multi-Beam High Throughput Satellite Systems

    Get PDF
    Beam-Hopping (BH) and precoding are two trending technologies for the satellite community. While BH enables flexibility to adapt the offered capacity to the heterogeneous demand, precoding aims at boosting the spectral efficiency. In this paper, we consider a high throughput satellite (HTS) system that employs BH in conjunction with precoding. In particular, we propose the concept of Cluster-Hopping (CH) that seamlessly combines the BH and precoding paradigms and utilize their individual competencies. The cluster is defined as a set of adjacent beams that are simultaneously illuminated. In addition, we propose an efficient time-space illumination pattern design, where we determine the set of clusters that can be illuminated simultaneously at each hopping event along with the illumination duration. We model the CH time-space illumination pattern design as an integer programming problem which can be efficiently solved. Supporting results based on numerical simulations are provided which validate the effectiveness of the proposed CH concept and time-space illumination pattern design

    Low-power Secret-key Agreement over OFDM

    Get PDF
    Information-theoretic secret-key agreement is perhaps the most practically feasible mechanism that provides unconditional security at the physical layer to date. In this paper, we consider the problem of secret-key agreement by sharing randomness at low power over an orthogonal frequency division multiplexing (OFDM) link, in the presence of an eavesdropper. The low power assumption greatly simplifies the design of the randomness sharing scheme, even in a fading channel scenario. We assess the performance of the proposed system in terms of secrecy key rate and show that a practical approach to key sharing is obtained by using low-density parity check (LDPC) codes for information reconciliation. Numerical results confirm the merits of the proposed approach as a feasible and practical solution. Moreover, the outage formulation allows to implement secret-key agreement even when only statistical knowledge of the eavesdropper channel is available.Comment: 9 pages, 4 figures; this is the authors prepared version of the paper with the same name accepted for HotWiSec 2013, the Second ACM Workshop on Hot Topics on Wireless Network Security and Privacy, Budapest, Hungary 17-19 April 201

    Carrier Aggregation in Multi-Beam High Throughput Satellite Systems

    Get PDF
    Carrier Aggregation (CA) is an integral part of current terrestrial networks. Its ability to enhance the peak data rate, to efficiently utilize the limited available spectrum resources and to satisfy the demand for data-hungry applications has drawn large attention from different wireless network communities. Given the benefits of CA in the terrestrial wireless environment, it is of great interest to analyze and evaluate the potential impact of CA in the satellite domain. In this paper, we study CA in multibeam high throughput satellite systems. We consider both inter-transponder and intra-transponder CA at the satellite payload level of the communication stack, and we address the problem of carrier-user assignment assuming that multiple users can be multiplexed in each carrier. The transmission parameters of different carriers are generated considering the transmission characteristics of carriers in different transponders. In particular, we propose a flexible carrier allocation approach for a CA-enabled multibeam satellite system targeting a proportionally fair user demand satisfaction. Simulation results and analysis shed some light on this rather unexplored scenario and demonstrate the feasibility of the CA in satellite communication systems

    On the use of ordered statistics decoders for low-density parity-check codes in space telecommand links

    Get PDF
    The performance of short low-density parity-check (LDPC) codes that will be included in the standard for next-generation space telecommanding is analyzed. The paper is focused on the use of a famous ordered statistics decoder known as most reliable basis (MRB) algorithm. Despite its complexity may appear prohibitive in space applications, this algorithm is shown to actually represent a realistic option for short LDPC codes, enabling significant gains over more conventional iterative algorithms. This is possible by a hybrid approach which combines the MRB decoder with an iterative decoding procedure in a sequential manner. The effect of quantization is also addressed, by considering two different quantization laws and comparing their performance. Finally, the impact of limited memory availability onboard of spacecrafts is analyzed and some solutions are proposed for efficient processing, towards a practical onboard decoder implementation
    corecore